INVESTIGATION OF FUEL CONSUMPTION AND SYSTEM PERFORMANCE BY CHANGING COMPRESSOR TYPE, CONTROL METHOD AND REFRIGERANT

Dr. Frank Rinne
Sanden Technical Centre Europe GmbH
Table of Content

• Goal of this Study
 • Vehicle Set-up
 • Test Conditions
 • Test Results
 • Summary
Goal of this Study

The goal of these investigations is the comparison of:

- **different compressor types:**
 - R134a - TRS → Scroll fixed displacement
 - R134a - PXC → internal variable displacement (IVD), swash plate compressor
 - R134a - PXE → internal controlled displacement with external variable set points (CVD)
 - R744 - SLC → external controlled SANDEN LUK Compressor for CO₂

- **different refrigerant systems:** R134a and R744 (CO₂)

- **different system control methods:** fixed and variable set points for the HVAC modul

The fuel consumption and system performance was done with a Honda Civic 1.4 Vision in the climatic wind tunnel.
Tested Compressors

R134a Compressors

- TRS09
- PXE/PXC13

R744 (CO₂) Compressor

- SLC28
• Goal of this Study

• Vehicle Setup

• Test Conditions

• Test Results

• Summary

Fuel Consumption Measurement Equipment
R134a A/C Sensors Installation Points
CO₂ A/C Sensors Installation Points
Sensor List
Thermocouple grid evaporator air Inlet
Thermocouple grid evaporator air Outlet
Thermocouple grid air condenser/gas cooler Inlet
Torque measurement device
Compressor specification/Refrigerant and Oil Charge
Fuel Consumption Measurement Equipment from the company PLU (Pierburg Instruments GmbH)

Direct mass flow measurement

Fuel Consumption Measurement Equipment

1 - Fuel inlet
2 - Fuel return to tank
3 - Fuel outlet
4 - Fuel return from engine

Dr. Frank Rinne TCE R&D

The copying, distribution and utilization of this document as well as the communication of its contents to others without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration.
R134a A/C Sensors Installation Points

Dr. Frank Rinne TCE R&D

The copying, distribution and utilization of this document as well as the communication of its contents to others without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration.
CO₂ A/C Sensors Installation Points

- Condenser/Gas cooler
- Int. Heat Exchanger
- Compressor
- TXV
- Evaporator
- Receiver

Dr. Frank Rinne TCE R&D
Sensor List

<table>
<thead>
<tr>
<th>Temperatures R744</th>
<th>Temperatures R134a</th>
<th>Air Temperature</th>
<th>Voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Out</td>
<td>Compressor Out</td>
<td>Evaporator front 1</td>
<td>Foot rear left</td>
</tr>
<tr>
<td>Gas Cooler Out</td>
<td>Condenser Out</td>
<td>Condenser grid 1</td>
<td></td>
</tr>
<tr>
<td>TXV in</td>
<td>TXV in</td>
<td>Evaporator front 2</td>
<td>Foot rear right</td>
</tr>
<tr>
<td>TXV out</td>
<td>TXV out</td>
<td>Condenser grid 2</td>
<td></td>
</tr>
<tr>
<td>Evaporator Out</td>
<td></td>
<td>Evaporator front 3</td>
<td>Foot front left</td>
</tr>
<tr>
<td>Compressor In</td>
<td></td>
<td>Condenser grid 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporator front 4</td>
<td>Foot front right</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condenser grid 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporator front 5</td>
<td>Foot front right</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condenser grid 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporator rear 1</td>
<td>Head front left</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condenser grid 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporator rear 2</td>
<td>Head front middle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condenser grid 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evaporator rear 3</td>
<td>Head front right</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condenser grid 8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressures R744</th>
<th>Pressures R134a</th>
<th>Current</th>
<th>Engine Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor Out</td>
<td>TXV in</td>
<td>Louver left</td>
<td>measured at crankshaft</td>
</tr>
<tr>
<td>Gas Cooler Out</td>
<td>TXV out</td>
<td>Louver centre left</td>
<td></td>
</tr>
<tr>
<td>TXV In</td>
<td>Compressor in</td>
<td>Louver centre right</td>
<td></td>
</tr>
<tr>
<td>Evaporator Out</td>
<td>Condenser out</td>
<td>Louver right</td>
<td></td>
</tr>
<tr>
<td>Compressor In</td>
<td>Crankcase</td>
<td>Car Ventilation</td>
<td>Head rear middle</td>
</tr>
<tr>
<td>Crankcase</td>
<td></td>
<td>Head rear right</td>
<td>Head rear right</td>
</tr>
</tbody>
</table>

- **Test Points Equipped by Sanden**
- **Temperatures**
 - R744
 - R134a
- **Air Temperatures**
- **Voltages**
- **Pressures**
 - R744
 - R134a
- **Current**
- **Engine Speed**
Thermocouple Grid Evaporator Air Temperature Inlet

Dr. Frank Rinne TCE R&D

The copying, distribution and utilization of this document as well as the communication of its contents to others without expressed authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or ornamental design registration.
Thermocouple Grid Evaporator Air Temperature Outlet
Thermocouple Grid Condenser / Gas cooler Air Inlet
Torque Measurement Device

A strain gauge was applied on the compressor shaft, a slip ring was used for the connection to the signal amplifier. This method is very sensitive due to high thermal stress. Only used for TRS and PXC tests.
• Goal of this Study
• Vehicle Setup
• Test Conditions
• Test Results
• Summary

Driving Conditions
Wind Tunnel Conditions and Car Settings
Cabin Temperature Calculation
Compressor / System Control Method
Driving Conditions

<table>
<thead>
<tr>
<th>Test</th>
<th>Soaking</th>
<th>120kph phase</th>
<th>80kph phase</th>
<th>40kph phase</th>
<th>Idle Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Gear</td>
<td>-</td>
<td>5th gear</td>
<td>4th gear</td>
<td>4th gear</td>
<td>Idle</td>
</tr>
<tr>
<td>Duration</td>
<td>*)</td>
<td>Until stability is reached</td>
<td>Until stability is reached</td>
<td>Until stability is reached</td>
<td>Until stability is reached</td>
</tr>
<tr>
<td>A/C Setting</td>
<td>-</td>
<td>A/C Off</td>
<td>A/C Off</td>
<td>A/C Off</td>
<td>A/C Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A/C On Blower Max</td>
<td>A/C On Blower Max</td>
<td>A/C On Blower Max</td>
<td>A/C On Blower Max</td>
</tr>
</tbody>
</table>

*) Time required to achieve a special under seat air temperature
Wind Tunnel Conditions and Car Settings

<table>
<thead>
<tr>
<th>No</th>
<th>Ambient Temp. [°C]</th>
<th>Humidity [%]</th>
<th>A/C</th>
<th>Solar load</th>
<th>Intake</th>
<th>Blower Speed</th>
<th>Car Cabin Temp. [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>5</td>
<td>60</td>
<td>on</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>1b</td>
<td>5</td>
<td>60</td>
<td>off</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>2a</td>
<td>10</td>
<td>75</td>
<td>on</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>2b</td>
<td>10</td>
<td>75</td>
<td>off</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>3a</td>
<td>20</td>
<td>60</td>
<td>on</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>3b</td>
<td>20</td>
<td>60</td>
<td>off</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>4a</td>
<td>30</td>
<td>60</td>
<td>on</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>4b</td>
<td>30</td>
<td>60</td>
<td>off</td>
<td>no</td>
<td>Fresh</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>5a</td>
<td>40</td>
<td>60</td>
<td>on</td>
<td>930 W/m²</td>
<td>Recirc.</td>
<td>high</td>
<td>23</td>
</tr>
<tr>
<td>5b</td>
<td>40</td>
<td>60</td>
<td>off</td>
<td>930 W/m²</td>
<td>Recirc.</td>
<td>high</td>
<td>23</td>
</tr>
</tbody>
</table>
Cabin Temperature Calculation

The average car cabin temperature is calculated as follows*):

- 53% Head temperatures
- 23,5% Seat temperature
- 23,5% Foot temperatures

*) see also sensor list
Compressor / System Control Method

Ambient Temperature 20°C

Evaporator

Cabin Temperature 23°C

Heater

Air Temperature [°C]

20°C

10°C

4°C

23°C Car Cabin Temperature

Cool Down

PXE

Re-Heat

PXC (100% PWM)
Compressor / System Control Method

- **TRS**: clutch cycling
 \[\Rightarrow \text{controlled by the temperature sensor at the evaporator in the HVAC module} \]

- **PXC**: clutch cycling, PWM signal 100% simulating an internal controlled compressor with fixed set point \[\Rightarrow \text{controlled by the temperature sensor at the evaporator in the HVAC module} \]

- **PXE**: change of PWM signal to reach average air temperature after evaporator = f(ambient)

 Ambient temperature:
 \[\begin{array}{cccc}
 5^\circ \text{C} & 10^\circ \text{C} & 20^\circ \text{C} & \text{higher than } 20^\circ \text{C} \\

 \end{array} \]

 \[T_{av., \text{air, evaporator, outlet}}: \begin{array}{cccc}
 4^\circ \text{C} & 8^\circ \text{C} & 10^\circ \text{C} & \text{lowest setting} \\

 \end{array} \]

- **SLC CO\textsubscript{2} system**: reach the same average air temperature after evaporator = f(ambient)

 Ambient temperature:
 \[\begin{array}{cccc}
 5^\circ \text{C} & 10^\circ \text{C} & 20^\circ \text{C} & \text{higher than } 20^\circ \text{C} \\

 \end{array} \]

 \[T_{av., \text{air, evaporator, outlet}}: \begin{array}{cccc}
 4^\circ \text{C} & 8^\circ \text{C} & 10^\circ \text{C} & \text{lowest setting} \\

 \end{array} \]
• Goal of this Study
• Vehicle Setup
• Test Conditions
• Test Results

Fuel consumption
A/C related fuel consumption calculated from the fuel consumption difference between A/C on and A/C off
Pull Down Tests with R134a and CO₂
Fuel Consumption Difference A/C on - A/C off

Only belt driven compressors. CO\textsubscript{2} electric compressor is externally supplied - no comparison of the FC differences possible.
Idle - Fuel Consumption Difference A/C on - A/C off

CO₂ is worse at lower speed and higher temperature (See slide 63 and following).

At part load condition external controlled compressor (PXE) have significant advantages.

Dr. Frank Rinne TCE R&D
40 kph
Fuel Consumption Difference A/C on - A/C off

AC on / Blower high / 40 kph

CO₂ is worse at lower speed and higher temperature (See slide 63 and following).

At part load condition external controlled compressor (PXE) have significant advantages.

Dr. Frank Rinne TCE R&D
80 kph
Fuel Consumption Difference A/C on - A/C off

AC on / Blower high / 80 kph

At part load condition external controlled compressor (PXE) have significant advantages.

SLC is good at higher speed and higher temperature.

Dr. Frank Rinne TCE R&D
120 kph
Fuel Consumption Difference A/C on - A/C off

At part load condition external controlled compressor (PXE) have significant advantages.

SLC is good at higher speed and higher temperature.

Dr. Frank Rinne TCE R&D
External controlled compressors (PXE) has at part load condition (10°C - 20°C) advantages due to variable evaporator temperature control.

- CO$_2$ is worse at lower speed and higher temperature, gas cooler performance seems to be very important.
- CO$_2$ SLC showed the lowest FC at high speed and high temperature.
Pull Down Test - R134a PXE

Car Cabin Temperatures

- Ambient Temperature: 40°C
- R.H.: 60%
- Sun Load: 930 W
- Refrigerant: R134a
- Compressor: PXE13
- REC
- 40 kph, 4th gear
- 100 kph, 5th gear
- 0 kph, Idle

19 minutes for 30 K cooling down of the average car cabin temperature

Temperature graph showing:
- Average Head
- Average Foot
- Average Louver
- Average Cabin

53.8 °C
25.0 °C

Dr. Frank Rinne TCE R&D
Pull Down Test - CO₂ SLC

Car Cabin Temperatures

- 40 kph, 4th gear
- 100 kph, 5th gear
- 0 kph, Idle

Temperature [°C]

Time [hh:mm]

0:00 0:04 0:08 0:12 0:16 0:20 0:24 0:28 0:32 0:36 0:40 0:44 0:48 0:52 0:56 1:00 1:04 1:08 1:12 1:16 1:20 1:24 1:28 1:32 1:36 1:40 1:44 1:48 1:52 1:56 2:00 2:04 2:08 2:12 2:16 2:20 2:24 2:28 2:32 2:36 2:40 2:44 2:48 2:52 2:56 3:00

- Controlability need to be improved.
- 55 °C
- 25 °C

9 minutes for 30 K cooling down of the average car cabin temperature - much larger cooling capacity

Pull Down Test
Ambient Temperature: 40 °C
R.H.: 60%
Sun Load: 930 W
Refrigerant: R744
Compressor: SLC
REC

Dr. Frank Rinne TCE R&D

Sanden Technical Centre (Europe) GmbH
Summary of Pull Down Tests

• The R134a system needs 19 minutes to reach 25°C cabin temperature.
• The CO₂ SLC system needs 9 minutes to reach 25°C cabin temperature.
• The results show an unnecessary high cooling capacity of the CO₂ SLC system (around 100% more).
• Optimising the CO₂ SLC system to a smaller system, means decreasing the maximum displacement. Probably it is still possible to have better performance, even at lower speed and higher temperature.